Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
Funct Plant Biol ; 512024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743837

RESUMEN

Cassava (Manihot esculenta Crantz), an important tropical crop, is affected by extreme climatic events, including rising CO2 levels. We evaluated the short-term effect of elevated CO2 concentration (ECO2 ) (600, 800 and 1000ppm) on the photosynthetic efficiency of 14 cassava genotypes. ECO2 significantly altered gaseous exchange parameters (net photosynthetic rate (P n ), stomatal conductance (g s ), intercellular CO2 (C i ) and transpiration (E )) in cassava leaves. There were significant but varying interactive effects between ECO2 and varieties on these physiological characteristics. ECO2 at 600 and 800ppm increased the P n rate in the range of 13-24% in comparison to 400ppm (ambient CO2 ), followed by acclimation at the highest concentration of 1000ppm. A similar trend was observed in g s and E . Conversely, C i increased significantly and linearly across increasing CO2 concentration. Along with C i , a steady increase in water use efficiency [WUEintrinsic (P n /g s ) and WUEinstantaneous (P n /E )] across various CO2 concentrations corresponded with the central role of restricted stomatal activity, a common response under ECO2 . Furthermore, P n had a significant quadratic relationship with the ECO2 (R 2 =0.489) and a significant and linear relationship with C i (R 2 =0.227). Relative humidity and vapour pressure deficit during the time of measurements remained at 70-85% and ~0.9-1.31kPa, respectively, at 26±2°C leaf temperature. Notably, not a single variety exhibited constant performance for any of the parameters across CO2 concentrations. Our results indicate that the potential photosynthesis can be increased up to 800ppm cassava varieties with high sink capacity can be cultivated under protected cultivation to attain higher productivity.


Asunto(s)
Dióxido de Carbono , Manihot , Fotosíntesis , Manihot/efectos de los fármacos , Manihot/fisiología , Fotosíntesis/efectos de los fármacos , Dióxido de Carbono/metabolismo , Hojas de la Planta/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Genotipo , Agua
2.
PLoS Biol ; 22(5): e3002592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691548

RESUMEN

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Modelos Biológicos , Estomas de Plantas , Transducción de Señal , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Simulación por Computador , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Plant Physiol Biochem ; 210: 108626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615443

RESUMEN

Stomatal operation is crucial for optimising plant water and gas exchange and represents a major trait conferring abiotic stress tolerance in plants. About 56% of agricultural land around the globe is classified as acidic, and Al toxicity is a major limiting factor affecting plant performance in such soils. While most of the research work in the field discusses the impact of major abiotic stresses such as drought or salinity on stomatal operation, the impact of toxic metals and, specifically aluminium (Al) on stomatal operation receives much less attention. We aim to fill this knowledge gap by summarizing the current knowledge of the adverse effects of acid soils on plant stomatal development and operation. We summarised the knowledge of stomatal responses to both long-term and transient Al exposure, explored molecular mechanisms underlying plant adaptations to Al toxicity, and elucidated regulatory networks that alleviate Al toxicity. It is shown that Al-induced stomatal closure involves regulations of core stomatal signalling components, such as ROS, NO, and CO2 and key elements of ABA signalling. We also discuss possible targets and pathway to modify stomatal operation in plants grown in acid soils thus reducing the impact of Al toxicity on plant growth and yield.


Asunto(s)
Aluminio , Estomas de Plantas , Suelo , Aluminio/toxicidad , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Suelo/química , Productos Agrícolas/metabolismo , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Adaptación Fisiológica/efectos de los fármacos
4.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575849

RESUMEN

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Asunto(s)
Atmósfera , Dióxido de Carbono , Celulosa , Fabaceae , Isótopos de Oxígeno , Hojas de la Planta , Poaceae , Agua , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Celulosa/metabolismo , Poaceae/efectos de los fármacos , Poaceae/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Fabaceae/efectos de los fármacos , Fabaceae/fisiología , Fabaceae/metabolismo , Atmósfera/química , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología
5.
Int J Biometeorol ; 68(5): 991-1004, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528211

RESUMEN

An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.


Asunto(s)
Clorofila , Ajo , Ozono , Fotosíntesis , Hojas de la Planta , Ozono/farmacología , Ajo/efectos de los fármacos , Clorofila/metabolismo , Clorofila/análisis , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Catalasa/metabolismo , Peroxidasa/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Contaminantes Atmosféricos , Ácido Ascórbico/análisis
7.
Biochem Biophys Res Commun ; 587: 119-125, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34871999

RESUMEN

Abscisic acid (ABA) plays an important role in seed germination, stomatal closure, and seedling growth inhibition in plants. Among downstream genes whose expression levels are regulated by AFA1 (Arabidopsis F-box Protein Hypersensitive to ABA 1), one gene, AtHAD1 upregulated by ABA was selected from Arabidopsis. AtHAD1 was induced by drought and salt stresses as well as by ABA and was found in dry seeds. Its loss-of-function mutants exhibited increased ABA-sensitivity in germination, seedling growth, and stomatal closure. In addition, the mutants displayed a lower water loss rate and higher survival rate under drought stress than the wild-type plants, indicating that a loss of AtHAD1 leads to enhanced drought tolerance. These results show that AtHAD1 has an inhibitory role in the ABA response and ABA-mediated drought tolerance. The expression levels of several ABA-responsive genes in athad1 were higher than those in the wild-type under the ABA treatment, suggesting that AtHAD1, as a negative regulator in the ABA response, could be associated with the downregulation of the ABA-responsive genes. The phosphatase assay showed that AtHAD1 exhibits phosphatase activity. Monitoring of the subcellular localization of GFP-fused AtHAD1 proteins indicated that AtHAD1 exists in the nucleus and cytoplasm. Overall, this study shows that Arabidopsis HAD1 as an intracellular phosphatase negatively functions in the ABA-mediated cellular responses. This research could serve as a research basis to understand the functional link between ABA signaling and the regulation process of the cellular phosphate level.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Germinación/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salinidad , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Transducción de Señal , Estrés Fisiológico
8.
Cells ; 10(11)2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34831377

RESUMEN

Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.


Asunto(s)
Hydrangea/crecimiento & desarrollo , Hierro/farmacología , Antioxidantes/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , FMN Reductasa/metabolismo , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hydrangea/anatomía & histología , Hydrangea/efectos de los fármacos , Hydrangea/enzimología , Concentración de Iones de Hidrógeno , Micronutrientes/análisis , Modelos Biológicos , Nutrientes/análisis , Fotosíntesis/efectos de los fármacos , Pigmentación/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Solubilidad
9.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831328

RESUMEN

Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.


Asunto(s)
Cerio/farmacología , Nanopartículas del Metal/química , Nutrientes , Fotosíntesis , Pisum sativum/fisiología , Óxido de Zinc/farmacología , Cerio/metabolismo , Pisum sativum/efectos de los fármacos , Pisum sativum/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Ribulosafosfatos/metabolismo , Zinc/metabolismo
10.
ACS Chem Biol ; 16(8): 1566-1575, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34379974

RESUMEN

The phytohormone abscisic acid (ABA) plays an important role in plant stress response, mainly against desiccation. Hence, ABA receptor agonists may function as agents to enhance drought tolerance in crops. ABA exhibits diverse functions that impact plant development and are regulated by various ABA receptor subfamilies. Indeed, we previously reported that 3'-alkyl ABAs exhibit diverse receptor specificities and that 3'-butyl ABA induced a drought stress response without eliciting growth inhibitory effects in Arabidopsis seedlings. Thus, to further investigate plant responses induced by 3'-butyl ABA, as well as the receptors that control the opposing stress and growth responses, we designed new 3'-alkyl ABA derivatives. In addition to the 3'-alkyl chain, a cyclopropyl group was attached to position 3 of ABA to occupy the C6 cleft in the ABA-binding pocket of the receptors, which served to increase the binding affinity and specificity to a certain receptor set. Additionally, the inhibitory activity of pyrabactin resistance 1 (PYR1) and PYR1-like (PYL1) proteins against type 2C protein phosphatase increased following incorporation of the 3-cyclopropyl group in all tested 3'-alkyl ABAs. Interestingly, 3'-butyl ABA induced the highest tolerance against drought stress, compared with 3-cyclopropyl derivatives. To investigate the molecular mechanism underlying the effects elicited by different chemical treatments, those of ABA derivatives on stomatal closure, growth, and gene expression were studied. Evaluation of the receptors activated by ABA derivatives and the plant responses revealed the induction of PYR1, PYL1, PYL2, and PYL5, mediated stomatal closure, and regulated transcription, consequently leading to drought tolerance in plants.


Asunto(s)
Ácido Abscísico/análogos & derivados , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
BMC Plant Biol ; 21(1): 368, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384391

RESUMEN

BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 µM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS: The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS: Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 µM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.


Asunto(s)
Melatonina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Antioxidantes/metabolismo , Biomasa , Clorofila/metabolismo , Sequías , Estrés Oxidativo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/ultraestructura , Prolina/metabolismo , Especies Reactivas de Oxígeno , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Azúcares/metabolismo , Zea mays/enzimología , Zea mays/fisiología
12.
Cells ; 10(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209882

RESUMEN

GABA (gamma-aminobutyric acid) and melatonin are endogenous compounds that enhance plant responses to abiotic stresses. The response of Vicia faba to different stressors (salinity (NaCl), poly ethylene glycol (PEG), and sulfur dioxide (SO2)) was studied after priming with sole application of GABA and melatonin or their co-application (GABA + melatonin). Both melatonin and GABA and their co-application increased leaf area, number of flowers, shoot dry and fresh weight, and total biomass. Plants treated with GABA, melatonin, and GABA + melatonin developed larger stomata with wider aperture compared to the stomata of control plants. The functionality of the photosynthetic system was improved in primed plants. To investigate the photosynthetic functionality in details, the leaf samples of primed plants were exposed to different stressors, including SO2, PEG, and NaCl. The maximum quantum yield of photosystem II (PS II) was higher in the leaf samples of primed plants, while the non-photochemical quenching (NPQ) of primed plants was decreased when leaf samples were exposed to the stressors. Correlation analysis showed the association of initial PIabs with post-stress FV/FM and NPQ. Stressors attenuated the association of initial PIabs with both FV/FM and NPQ, while priming plants with GABA, melatonin, or GABA + melatonin minimized the effect of stressors by attenuating these correlations. In conclusion, priming plants with both GABA and melatonin improved growth and photosynthetic performance of Vicia faba and mitigated the effects of abiotic stressors on the photosynthetic performance.


Asunto(s)
Melatonina/farmacología , Fotosíntesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Biomasa , Clorofila/metabolismo , Flores/efectos de los fármacos , Flores/fisiología , Presión Osmótica/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Cloruro de Sodio/farmacología , Dióxido de Azufre/toxicidad , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/fisiología
13.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208343

RESUMEN

Ozone (O3) is a gaseous environmental pollutant that can enter leaves through stomatal pores and cause damage to foliage. It can induce oxidative stress through the generation of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) that can actively participate in stomatal closing or opening in plants. A number of phytohormones, including abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) are involved in stomatal regulation in plants. The effects of ozone on these phytohormones' ability to regulate the guard cells of stomata have been little studied, however, and the goal of this paper is to explore and understand the effects of ozone on stomatal regulation through guard cell signaling by phytohormones. In this review, we updated the existing knowledge by considering several physiological mechanisms related to stomatal regulation after response to ozone. The collected information should deepen our understanding of the molecular pathways associated with response to ozone stress, in particular, how it influences stomatal regulation, mitogen-activated protein kinase (MAPK) activity, and phytohormone signaling. After summarizing the findings and noting the gaps in the literature, we present some ideas for future research on ozone stress in plants.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ozono/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Transducción de Señal/efectos de los fármacos , Modelos Biológicos , Estomas de Plantas/efectos de los fármacos
14.
Nat Commun ; 12(1): 2181, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846350

RESUMEN

Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Estomas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos
15.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805821

RESUMEN

Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Citoplasma/metabolismo , Sequías , Endonucleasas/antagonistas & inhibidores , Endonucleasas/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Células Vegetales/efectos de los fármacos , Células Vegetales/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Prolina/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
16.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806336

RESUMEN

1',4'-trans-diol-ABA is a key precursor of the biosynthesis of abscisic acid (ABA) biosynthesis in fungi. We successfully obtained the pure compound from a mutant of Botrytis cinerea and explored its function and possible mechanism on plants by spraying 2 mg/L 1',4'-trans-diol-ABA on tobacco leaves. Our results showed that this compound enhanced the drought tolerance of tobacco seedlings. A comparative transcriptome analysis showed that a large number of genes responded to the compound, exhibiting 1523 genes that were differentially expressed at 12 h, which increased to 1993 at 24 h and 3074 at 48 h, respectively. The enrichment analysis demonstrated that the differentially expressed genes (DEGs) were primarily enriched in pathways related to hormones and resistance. The DEGs of transcription factors were generally up-regulated and included the bHLH, bZIP, ERF, MYB, NAC, WRKY and HSF families. Moreover, the levels of expression of PYL/PYR, PP2C, SnRK2, and ABF at the ABA signaling pathway responded positively to exogenous 1',4'-trans-diol-ABA. Among them, seven ABF transcripts that were detected were significantly up-regulated. In addition, the genes involved in salicylic acid, ethylene and jasmonic acid pathways, reactive oxygen species scavenging system, and other resistance related genes were primarily induced by 1',4'-trans-diol-ABA. These findings indicated that treatment with 1',4'-trans-diol-ABA could improve tolerance to plant abiotic stress and potential biotic resistance by regulating gene expression, similar to the effects of exogenous ABA.


Asunto(s)
Ácido Abscísico/análogos & derivados , Nicotiana/efectos de los fármacos , Nicotiana/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Ácido Abscísico/farmacología , Botrytis/química , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Estomas de Plantas/anatomía & histología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Nicotiana/fisiología , Factores de Transcripción/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925054

RESUMEN

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Termografía/métodos , Arabidopsis/efectos de los fármacos , Cinética , Luz , Presión Osmótica , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Transpiración de Plantas/efectos de la radiación , Salinidad , Cloruro de Sodio/administración & dosificación , Estrés Fisiológico
18.
Plant Sci ; 306: 110858, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33775364

RESUMEN

Drought represents a leading constraint over crop productivity worldwide. The plant response to this stress is centered on the behavior of the cell membrane, where the transduction of abscisic acid (ABA) signaling occurs. Here, the Ras-related small GTP-binding protein RabE1c has been shown able to bind to an ABA receptor in the Arabidopsis thaliana plasma membrane, thereby positively regulating ABA signaling. RabE1c is highly induced by drought stress and expressed abundantly in guard cells. In the loss-of-function rabe1c mutant, both stomatal closure and the whole plant drought stress response showed a reduced sensitivity to ABA treatment, demonstrating that RabE1c is involved in the control over transpirative water loss through the stomata. Impairment of RabE1c's function suppressed the accumulation of the ABA receptor PYL4. The over-expression of RabE1c in A. thaliana enhanced the plants' ability to tolerate drought, and a similar phenotypic effect was achieved by constitutively expressing the gene in Chinese cabbage (Brassica rapassp. pekinensis). The leading conclusion was that RabE1c promotes the degradation of PYL4, suggesting a possible genetic strategy to engineer crop plants to better withstand drought stress.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Estomas de Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Proteínas de Arabidopsis/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estomas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
Plant Cell ; 33(5): 1813-1827, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33665670

RESUMEN

Light-induced stomatal opening stimulates CO2 uptake and transpiration in plants. Weak blue light under strong red light effectively induces stomatal opening. Blue light-dependent stomatal opening initiates light perception by phototropins, and the signal is transmitted to a plasma membrane H+-ATPase in guard cells via BLUE LIGHT SIGNALING 1 (BLUS1) kinase. However, it is unclear how BLUS1 transmits the signal to H+-ATPase. Here, we characterized BLUS1 signaling in Arabidopsis thaliana, and showed that the BLUS1 C-terminus acts as an auto-inhibitory domain and that phototropin-mediated Ser-348 phosphorylation within the domain removes auto-inhibition. C-Terminal truncation and phospho-mimic Ser-348 mutation caused H+-ATPase activation in the dark, but did not elicit stomatal opening. Unexpectedly, the plants exhibited stomatal opening under strong red light and stomatal closure under weak blue light. A decrease in intercellular CO2 concentration via red light-driven photosynthesis together with H+-ATPase activation caused stomatal opening. Furthermore, phototropins caused H+-ATPase dephosphorylation in guard cells expressing constitutive signaling variants of BLUS1 in response to blue light, possibly for fine-tuning stomatal opening. Overall, our findings provide mechanistic insights into the blue light regulation of stomatal opening.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Dióxido de Carbono/farmacología , Luz , Fosfotransferasas/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fosfoserina/metabolismo , Fosfotransferasas/química , Fototropinas/metabolismo , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Dominios Proteicos , ATPasas de Translocación de Protón/metabolismo
20.
Plant Cell Environ ; 44(6): 1728-1740, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33665817

RESUMEN

Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.


Asunto(s)
Hojas de la Planta/metabolismo , Estomas de Plantas/fisiología , Prunus dulcis/metabolismo , Pyrus/metabolismo , Agua/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Glicósidos/farmacología , Cinética , Microscopía Electrónica de Rastreo , Hojas de la Planta/ultraestructura , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...